Modeling Multirotor Aerodynamic Interactions Through the Vortex Particle Method

Eduardo J. Alvarez and Andrew Ning Brigham Young University, Provo, UT

OUTLINE

- Motivation
- Viscous Vortex Particle Method
- Propeller Model
- Results
 - Individual rotor validation
 - Multirotor validation
 - Parametric study

Motivation

- eVTOL UAM is projected to grow into a \$1.5 trillion industry.
- However, conventional analysis tools are unfit for conceptual design.

© NASA, X-57 Maxwell

🗅 A³ by Airbus, Vahana

Vortex Particle Method

• Vorticity form of Navier-Stokes in Lagrangian scheme.

Vortex Particle Method

- Vorticity form of Navier-Stokes in Lagrangian scheme.
- Captures viscous diffusion, vortex mixing, and decay.
- Computationally inexpensive.
- CPU and GPU parallelizable.
- Meshless.

Variable-fidelity models through VPM

[1] Alvarez, E. and Ning, A., 2018, "Development of a Vortex Particle Code for the Modeling of Wake Interaction in Distributed Propulsion."

VPM Scaling

N-body problem $\mathcal{O}(N^2)$

Fast multipole approximation^[1,2]

Fast multipole approximation^[1,2]

- $\mathcal{O}(N)$ scaling
- CPU and GPU scalable

[1] www.bu.edu/exafmm [2] Yokota, R. and Barba, L. A., 2011, "Treecode and fast multipole method for N-body simulation with CUDA."

Propeller Model

TEMPORAL RESOLUTION

- 3rd order Runge-Kutta
- $\Delta t \rightarrow 5^{\circ}$ rotation

SPATIAL RESOLUTION

- 50 elements per blade
- 2 particles shed per step
- Core overlap σ twice the distance between particles

- Particles are created from every source of vorticity (as colored).
- Modeling lifting surfaces through embedded particles allows linear scaling of simulations, $\mathcal{O}(N)$.

Propeller Model

VPM captures all vortex dynamics from near field down to turbulent breakdown

Alvarez, E. and Ning, A., AVIATION 2018,

"Development of a Vortex Particle Code for the Modeling of Wake Interaction in Distributed Propulsion" https://scholarsarchive.byu.edu/facpub/2116/

Example Simulation

Test Cases

Hover, low Reynolds

DJI Phantom II

Forward flight, high Reynolds APC 10x7

PARAMETER	DJI Phantom II	APC 10x7
Diameter	9.4 in (240 mm)	10 in (254 mm)
Speed	4800 RPM	9200 RPM
Tip speed	0.18 Mach	0.36 Mach
Freestream	0 m/s	0 – 27 m/s
Advance ratio	0	0 – 0.75
Chord-based Reynolds	6.2×10^{4}	1.2 × 10 ⁵
Diameter-based Reynolds	6.5 × 10 ⁵	1.5×10^{6}

RESULTS

Hover – Individual Rotor

[1] Zhou, W., Ning, Z., Li, H., and Hu, H., 2017, "An Experimental Investigation on Rotor-to-Rotor Interactions of Small UAV Propellers."

Hover – Individual Rotor

[1] Zhou, W., Ning, Z., Li, H., and Hu, H., 2017, "An Experimental Investigation on Rotor-to-Rotor Interactions of Small UAV Propellers."

Forward Flight – Individual Rotor

[1] McCrink, M. H. and Gregory, J. W., 2017, "Blade Element Momentum Modeling of Low-Reynolds Electric Propulsion Systems."

RESULTS **MULTIROTOR**

Hover – Multirotor

Hover – Multirotor

Hover – Multirotor

Rotor-on-rotor interactions (thrust drop and unsteady loading) are predicted with sufficient accuracy

[1] Zhou, W., Ning, Z., Li, H., and Hu, H., 2017, "An Experimental Investigation on Rotor-to-Rotor Interactions of Small UAV Propellers."

Hover – Individual Rotor

Simulation captures similar near-field than observed in PIV

Ensemble Average

[1] Zhou, W., Ning, Z., Li, H., and Hu, H., 2017, "An Experimental Investigation on Rotor-to-Rotor Interactions of Small UAV Propellers."

Hover – Individual Rotor

Simulation captures similar near-field than observed in PIV

Phase-locked

RESULTS PARAMETRIC STUDY

- OPERATIONAL PARAMETERS
 - **Re** Reynolds number
 - J Advance ratio
 - **s** Separation
 - Counter or co-rotation
 Counter or co-rotation
- 6 response surfaces C_T, C_Q, η – mean and fluctuations
- 1152 simulations
- ~3.5 days on desktop computer Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

 ~ 4 minutes per simulation

- Performance drops in all configurations
- Largest interactions in hover and near hover
- ~3% max drop

- Performance drops in all configurations
- Largest interactions in hover and near hover
- ~3% max drop

- Performance drops in all configurations
- Largest interactions in hover and near hover
- ~3% max drop

- Performance drops in all configurations
- Largest interactions in hover and near hover
- ~3% max drop

- Largest fluctuations in hover and near-hover
- Fluctuations increase with Reynolds number

- Largest fluctuations in hover and near-hover
- Fluctuations increase with Reynolds number

- Largest fluctuations in hover and near-hover
- Fluctuations increase with Reynolds number

- Largest fluctuations in hover and near-hover
- Fluctuations increase with Reynolds number

Co-rotation vs Counter-rotation

• Counter-rotation is slightly less efficient than co-rotation for J > 0.25 (~0.5% less efficient)

CONCLUSIONS

VPM multirotor model

- Validated in hover and forward flight.
- Validated at low and high Reynolds.

Multirotor parametric study

- Interactions are detrimental across all advance ratios and Reynolds numbers.
- Performance drop accentuated at J < 0.2
- Largest thrust fluctuations at J < 0.2
- Counter-rotation is slightly less efficient at J > 0.25
- Higher Reynolds number accentuates interactions in a lightly tip-loaded rotor.

FUTURE WORK

- Coupling with FW-H noise code.
- Automatic derivatives for gradient-based design optimization.

http://flow.byu.edu/ https://github.com/byuflowlab/

Work funded by the High Impact Doctoral Research fellowship granted by BYU

