

Rotor-on-Rotor Aeroacoustic Interactions of Multirotor in Hover

Eduardo J. Alvarez, Austin Schenk, Tyler Critchfield, and Andrew Ning Brigham Young University, UT, USA

Motivation

Motivation

Difficulties of Multirotor Noise

- Low Reynolds number and high BPF
- Rotor-rotor unsteady interactions
- VTOL transition maneuver
- Fast enough for conceptual design?

OUTLINE

- Numerical methods
- Single-rotor validation
- Multirotor results
 - URANS vs VPM
 - Effects of tip-to-tip distance
 - Effects of downstream spacing

NUMERICAL METHODS

URANS

Viscous Vortex Particle Method (VPM)

Video: https://youtu.be/SLpnVIBpkps

FLOWUnsteady github.com/byuflowlab/FLOWUnsteady

URANS

VPM

Governing equation

Angular momentum eq. $\frac{D\boldsymbol{\omega}}{Dt} = (\boldsymbol{\omega} \cdot \nabla)\mathbf{u} + \nu\nabla^2\boldsymbol{\omega}$

Numerical scheme	Eulerian (mesh)	Lagrangian (meshless)
Boundary layer	Wall function	Momentum integral
Turbulence model	SST $k-\omega$	None (unresolved DNS)
Simulation	50 revolutions	50 revolutions
Computational resources	192 CPU cores for 48 hours	32 CPU cores for 2 hours
Computational cost	9200 processor-hours	64 processor-hours

FLOW

Lab

EXPERIMENTAL DATA: Zawodny, N., Boyd, D., and Burley, C., 2017, "Acoustic Characterization and Prediction of Representative, Small-Scale Rotary-Wing UAS Components."

Aeroacoustics Solver

Tonal Noise

• Ffowcs Williams-Hawkings (FW-H) equation

$$\bar{\Box}^2 p'(\mathbf{x},t) = \frac{\partial}{\partial t} \left(\rho_0 \mathbf{u}_n \delta(f) \right) - \frac{\partial}{\partial x_i} \left(\Delta P_{ij} \hat{\mathbf{n}}_j \delta(f) \right)$$

thickness loading

- Loading through compact patches
- PSU-WOPWOP

Broadband Noise

- Brooks, Pope, and Marcolini (BPM) method
- Separation stall, tip vortex formation, Turbulent BL edge, laminar BL vortex shedding, and TE bluntness.

FLOWUnsteady github.com/byuflowlab/FLOWUnsteady

FLOW

Lab

EXPERIMENTAL DATA: Zawodny, N., Boyd, D., and Burley, C., 2017, "Acoustic Characterization and Prediction of Representative, Small-Scale Rotary-Wing UAS Components."

MULTIROTOR RESULTS

Aerodynamic Interactions

EXPERIMENTAL DATA: Zhou, W., Ning, Z., Li, H., and Hu, H., 2017, "An Experimental Investigation on Rotor-to-Rotor Interactions of Small UAV Propellers."

Aerodynamic Interactions

EXPERIMENTAL DATA: Zhou, W., Ning, Z., Li, H., and Hu, H., 2017, "An Experimental Investigation on Rotor-to-Rotor Interactions of Small UAV Propellers."

Aerodynamic Interactions

Acoustic Interactions

EXPERIMENTAL DATA: Zhou, W., Ning, Z., Li, H., and Hu, H., 2017, "An Experimental Investigation on Rotor-to-Rotor Interactions of Small UAV Propellers."

Effects of Tip-to-Tip Distance

Effects of Downstream Spacing

Effects of Downstream Spacing

CONCLUSIONS

- VPM is 100x faster than URANS with comparable accuracy.
- 7 dBA noise increase as rotors are brought closer together.
- 4 dBA noise **reduction** by spacing the rotors downstream.
- Multirotor interactions are not alleviated with a lighter tip loading.

flow.byu.edu github.com/byuflowlab

Work funded by the High Impact Doctoral Research fellowship granted by BYU

