Published by the American Institute of Aeronautics and Astronautics, Inc., with permission

Vortex Particle Method for Electric Ducted Fan in Non-Axisymmetric Flow

Dr. Eduardo J. Alvarez

Whisper Aero Inc. Brigham Young University

Dr. Cibin Joseph and Prof. Andrew Ning

Brigham Young University

Whisper Aero

AVIATION Forum, June 12-16, 2023 Copyright © by Whisper Aero Inc.

Ducted fans are the next generation of DEP

Distributed Electric Propulsion

Ducted fans are the next generation of DEP

Related presentations

- The Business Case for Regional Air Mobility at Scale Monday 9:50pm, Harbor E
- Distributed Electric Propulsion and Vehicle Integration with Ducted Fans Monday 1:20pm, Harbor E
- Unlocking Low-Cost Regional Air Mobility through Whisper Aero-Propulsive Coupling Monday 1:40pm, Harbor E
- Mark Moore's keynote:
 How Whisper Aero Propels the Future of Aviation
 Thursday 8am, Grand Hall A-C

"Reviving the Vortex Particle Method: A Stable Formulation for Meshless Large Eddy Simulation." E. J. Alvarez & A. Ning (2022). In review.

Fundamentals

Meshless LES through the reformulated VPM

$$\nabla \times \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = \nabla \times \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u} \right)$$
$$\Rightarrow \frac{D \boldsymbol{\omega}}{Dt} = (\boldsymbol{\omega} \cdot \nabla) \mathbf{u} + \nu \nabla^2 \boldsymbol{\omega}$$

"Reviving the Vortex Particle Method: A Stable Formulation for Meshless Large Eddy Simulation." E. J. Alvarez & A. Ning (2022). In review.

Fundamentals

Meshless LES through the reformulated VPM

Navier-Stokes Eq.

$$\frac{\mathrm{D}}{\mathrm{D}t}\boldsymbol{\omega} = (\boldsymbol{\omega}\cdot\nabla)\mathbf{u} + \nu\nabla^2\boldsymbol{\omega}$$

LES-Filtered Navier-Stokes Eq.

$$\frac{\mathrm{d}}{\mathrm{d}t}\overline{\boldsymbol{\omega}} = \left(\overline{\boldsymbol{\omega}}\cdot\nabla\right)\overline{\mathbf{u}} + \nu\nabla^{2}\overline{\boldsymbol{\omega}} - \mathbf{E}_{\mathrm{adv}} - \mathbf{E}_{\mathrm{str}}$$

Particle Discretization

$$\overline{\boldsymbol{\omega}}(\mathbf{x}) = \sum_{p} \boldsymbol{\Gamma}_{p} \zeta_{\sigma_{p}} \left(\mathbf{x} - \mathbf{x}_{p} \right)$$

 $\overline{\phi}(\mathbf{x}) \equiv \int_{-\infty}^{\infty} \phi(\mathbf{y}) \zeta_{\sigma}(\mathbf{x} - \mathbf{y}) \, \mathrm{d}\mathbf{y}$ $\zeta_{\sigma} \quad \text{Filter kernel}$ $\sigma \quad \text{Cutoff length}$

Subfilter-scale (SFS) stress tensor

$$T_{ij} \equiv \overline{u_i \omega_j} - \overline{u_i} \, \overline{\omega_j}$$

$$\begin{array}{c} \text{SFS advection} & \text{SFS stretching} \\ \hline \left(\mathbf{E}_{\mathrm{adv}} \right)_i \equiv \frac{\partial T'_{ij}}{\partial x_j} & \left(\mathbf{E}_{\mathrm{str}} \right)_i \equiv -\frac{\partial T_{ij}}{\partial x_j} \end{array}$$

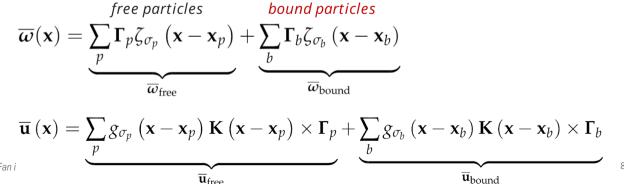
Reformulated VPM Governing Eqs.

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{p} &= \overline{\mathbf{u}}(\mathbf{x}_{p}) \\ \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{\Gamma}_{p} &= \left(\mathbf{\Gamma}_{p}\cdot\nabla\right)\overline{\mathbf{u}}(\mathbf{x}_{p}) - \frac{3}{5}\left\{\left[\left(\mathbf{\Gamma}_{p}\cdot\nabla\right)\overline{\mathbf{u}}(\mathbf{x}_{p})\right]\cdot\widehat{\mathbf{\Gamma}}_{p}\right\}\widehat{\mathbf{\Gamma}}_{p} - \frac{C_{d}}{\zeta_{\sigma_{p}}(\mathbf{0})}\mathbf{E}_{\mathrm{str}}(\mathbf{x}_{p}) \\ \frac{\mathrm{d}}{\mathrm{d}t}\sigma_{p} &= -\frac{1}{5}\frac{\sigma_{p}}{\|\mathbf{\Gamma}_{p}\|}\left[\left(\mathbf{\Gamma}_{p}\cdot\nabla\right)\overline{\mathbf{u}}(\mathbf{x}_{p})\right]\cdot\widehat{\mathbf{\Gamma}}_{p}, \\ \left(\frac{\mathrm{d}}{\mathrm{d}t}\overline{\omega}\right)_{\mathrm{viscous}} &= \nu\nabla^{2}\overline{\omega} \end{aligned}$$

Fundamentals

rVPM works well for unbounded flows but how can we introduce boundary conditions?




Fundamentals

rVPM works well for unbounded flows but how can we introduce boundary conditions?

Meshless LES with Immersed Vorticity

$$\frac{\mathrm{d}}{\mathrm{d}t}\overline{\omega} = (\overline{\omega}\cdot\nabla)\,\overline{\mathbf{u}} + \nu\nabla^2\overline{\omega} - \mathbf{E}_{\mathrm{adv}} - \mathbf{E}_{\mathrm{str}}$$

Whisper Aero | BYU Vortex Particle Method for Electric Ducted Fan i

Fundamentals

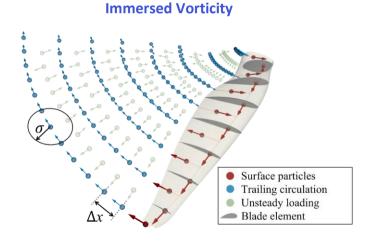
rVPM works well for unbounded flows but how can we introduce boundary conditions?

Meshless LES with Immersed Vorticity

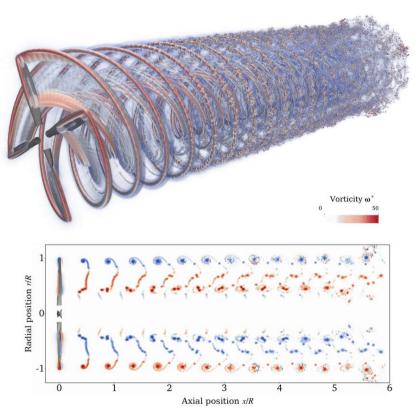
$$\frac{\mathrm{d}}{\mathrm{d}t}\overline{\omega} = (\overline{\omega}\cdot\nabla)\,\overline{\mathbf{u}} + \nu\nabla^2\overline{\omega} - \mathbf{E}_{\mathrm{adv}} - \mathbf{E}_{\mathrm{str}}$$

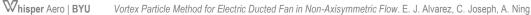
$$\overline{\boldsymbol{\omega}} = \overline{\boldsymbol{\omega}}_{\text{free}} + \overline{\boldsymbol{\omega}}_{\text{bound}}$$

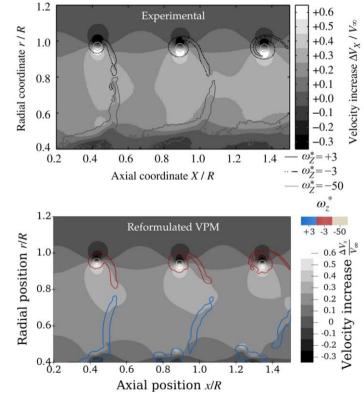
"FLOWUnsteady: An Interactional Aerodynamics Solver for Multirotor Aircraft and Wind Energy." E. J. Alvarez & A. Ning (2022). AIAA AVIATION Forum.


Rotor — Actuator Line Model (ALM)

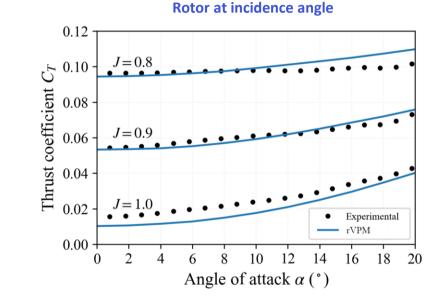
Force Calculation

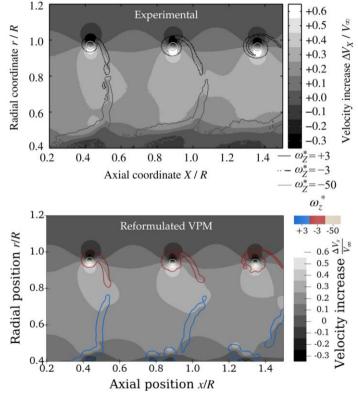

- Effective AOA from LES
- Airfoil lookup tables (c_l , c_d , vs AOA)
- 3D drag and stall delay due to centrifugal forces
- Prandtl loss correction for tip and hub


Circulation


$$\Gamma = C_l \frac{Vc}{2}$$

Rotor — Actuator Line Model (ALM)




Experimental: Sinnige et al., "Unsteady Pylon Loading Caused by Propeller-Slipstream Impingement for Tip-Mounted Propellers," Journal of Aircraft, 2018

11

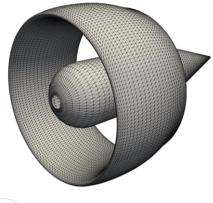
Rotor — Actuator Line Model (ALM)

Experimental: Sinnige et al., "Unsteady Pylon Loading Caused by Propeller-Slipstream Impingement for Tip-Mounted Propellers," Journal of Aircraft, 2018

12

Duct and Centerbody — Actuator Surface Model (ASM)

Panel Method

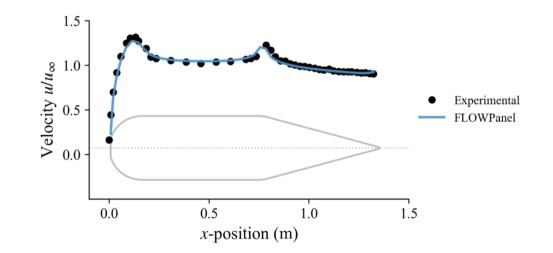

- Constant doublet elements (vortex rings)
- Imposes no-flow-through along walls
- Computes surface vorticity
- Computes surface velocity

Surface Pressure

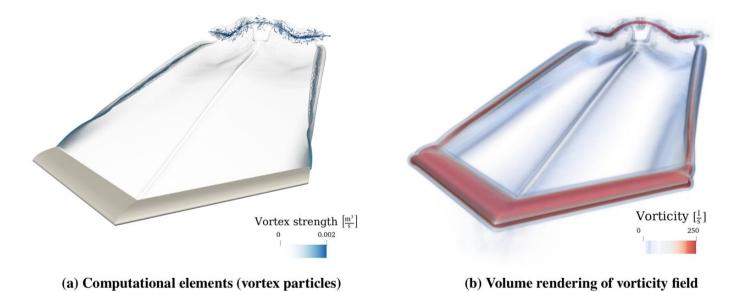
$$C_p \approx 1 - \left(\frac{u}{u_\infty}\right)^2$$

Immersed Vorticity

- Convert vortex rings into particles
- Shed vorticity from trailing edge



github.com/byuflowlab/FLOWPanel.jl


Actuator Surface Model Preliminary Validation

Thick non-lifting centerbody

Actuator Surface Model Preliminary Validation

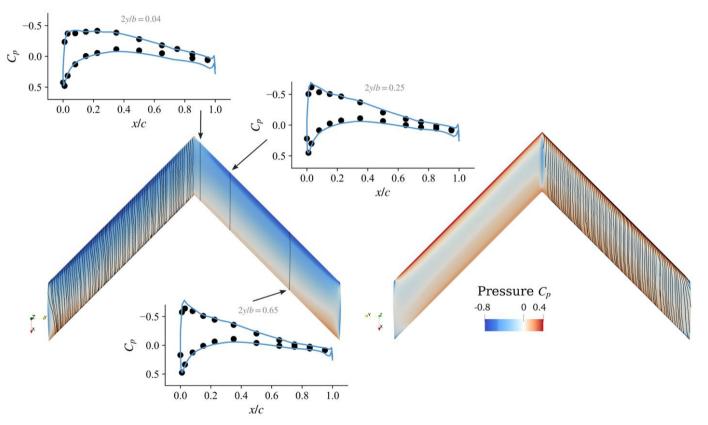
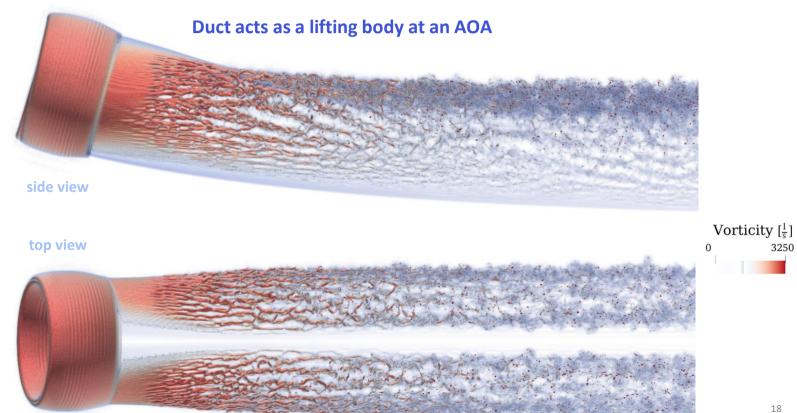
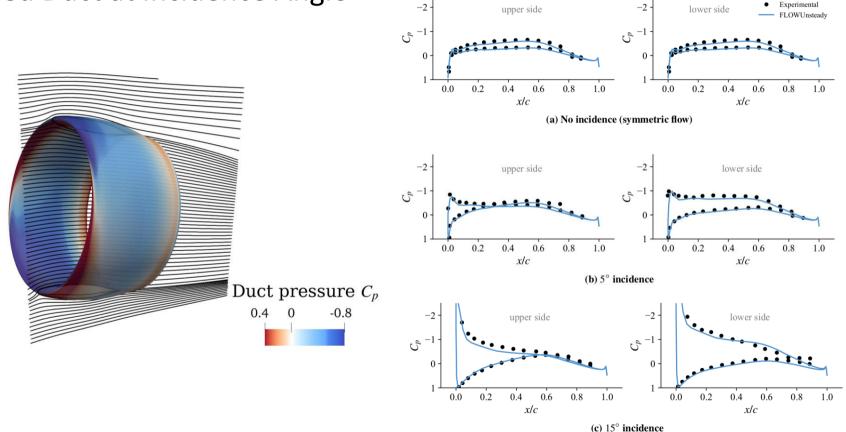

Lifting body

Fig. 4 Swept wing simulation using actuator surface model.

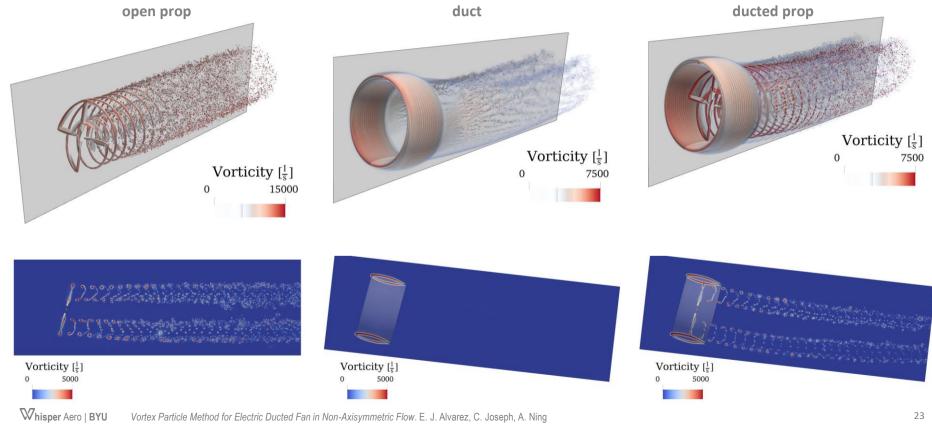
Actuator Surface Model


Preliminary Validation

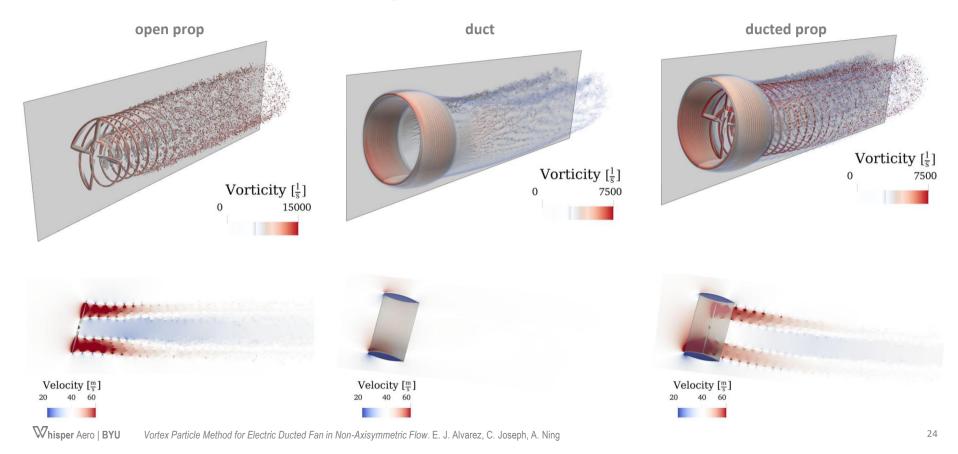

RESULTS

 \mathcal{U}_{∞}

Isolated Duct at Incidence Angle


Isolated Duct at Incidence Angle

Ducted Fan at Incidence Angle



Ducted Fan at Incidence Angle

Vortex Particle Method for Electric Ducted Fan in Non-Axisymmetric Flow. E. J. Alvarez, C. Joseph, A. Ning

Ducted Fan at Incidence Angle

Ducted Fan at Incidence Angle

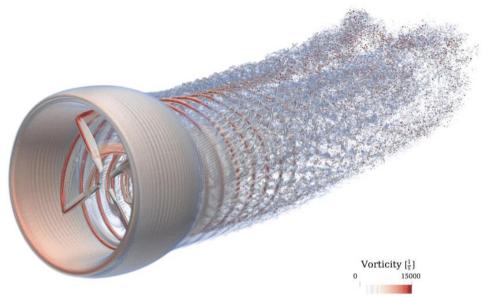
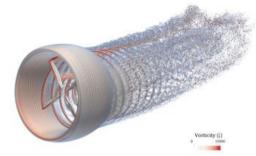


 Table 1
 Performance of propulsor with and without duct.


	Thrust T	Torque Q	Propulsive Efficiency η
Open propeller	49.1 N (11.0 lbf)	1.73 Nm	0.64
Ducted propeller	37.3 N (8.4 lbf)	1.18 Nm	0.72
Open propeller, $\alpha = 15^{\circ}$	53.4 N (12.0 lbf)	1.83 Nm	0.66
Ducted propeller, $\alpha = 15^{\circ}$	43.5 N (9.8 lbf)	1.13 Nm	0.87
	T	551/	

Propulsive efficiency defined as $\eta = \frac{Tu_{\infty}}{2\pi nQ}$, where $n = \frac{\text{RPM}}{60}$, RPM = 16.8 kHz, and $u_{\infty} = 40 \text{ m/s}$.

SUMMARY

- Developed actuator surface model based on a panel method
- ASM was validated for both non-lifting and lifting bodies
- Accurately resolves isolated duct at AOA
- Preliminary results on a ducted fan at AOA

github.com/byuflowlab/FLOWUnsteady

github.com/byuflowlab/FLOWPanel.jl

Future Work

- Include stators and centerbody
- Validation of ducted fan comparing to experiment
- Effects of non-axisymmetric flow on structures and noise

Whisper Aero